Evaluation of Four Supervised Learning Schemes in White Matter Hyperintensities Segmentation in Absence or Mild Presence of Vascular Pathology

نویسندگان

  • Muhammad Febrian Rachmadi
  • Maria del C. Valdés Hernández
  • Maria Leonora Fatimah Agan
  • Taku Komura
چکیده

We investigated the performance of four popular supervised learning algorithms in medical image analysis for white matter hyperintensities segmentation in brain MRI with mild or no vascular pathology. The algorithms evaluated in this study are support vector machine (SVM), random forest (RF), deep Boltzmann machine (DBM) and convolution encoder network (CEN). We compared these algorithms with two methods in the Lesion Segmentation Tool (LST) public toolbox which are lesion growth algorithm (LGA) and lesion prediction algorithm (LPA). We used a dataset comprised of 60 MRI data from 20 subjects from the ADNI database, each scanned once in three consecutive years. In this study, CEN produced the best Dice similarity coefficient (DSC): mean value 0.44. All algorithms struggled to produce good DSC due to the very small WMH burden (i.e., smaller than 1,500 mm). LST-LGA, LST-LPA, SVM, RF and DBM produced mean DSC scores ranging from 0.17 to 0.34.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning vs. Conventional Machine Learning: Pilot Study of WMH Segmentation in Brain MRI with Absence or Mild Vascular Pathology

In the wake of the use of deep learning algorithms in medical image analysis, we compared performance of deep learning algorithms, namely the deep Boltzmann machine (DBM), convolutional encoder network (CEN) and patch-wise convolutional neural network (patch-CNN), with two conventional machine learning schemes: Support vector machine (SVM) and random forest (RF), for white matter hyperintensiti...

متن کامل

Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.

We propose an adaptation of a convolutional neural network (CNN) scheme proposed for segmenting brain lesions with considerable mass-effect, to segment white matter hyperintensities (WMH) characteristic of brains with none or mild vascular pathology in routine clinical brain magnetic resonance images (MRI). This is a rather difficult segmentation problem because of the small area (i.e., volume)...

متن کامل

Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies.

Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the ...

متن کامل

Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation

White matter hyperintensities (WMH) on T2 or FLAIR sequences have been commonly observed on MR images of elderly people. They have been associated with various disorders and have been shown to be a strong risk factor for stroke and dementia. WMH studies usually required visual evaluation of WMH load or time-consuming manual delineation. This paper introduced WHASA (White matter Hyperintensities...

متن کامل

Image Classification using SOM and SVM Feature Extraction

Support Vector Machines (SVMs) are a relatively new supervised classification technique to the land cover mapping community.SVM are machine learning techniques that are used for segmentation and classification of medical pictures, as well as segmentation of white matter hyperintensities (WMH). Although there are various techniques implemented for the classification of image, here combinatorial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017